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Abstract. This paper concerns the possible ‘shock’ patterns that can exist in the solution to a singularly perturbed,
third-order nonlinear ordinary differential equation arising as the travelling-wave reduction of the Kuramoto-
Sivashinsky equation. In particular, the existence (or otherwise) of oscillatory shocks and multiple shocks made
up of combinations of oscillatory and monotonic shocks is examined, using an optimal truncation strategy to track
crucial exponentially small terms lying beyond all orders of the (divergent) algebraic expansion. The results pro-
vide further understanding of numerical solutions previously obtained by others, as well as giving a methodology
which is applicable to much broader classes of differential equations exhibiting multiscale phenomena; they also
afford same new insight into the multi-scales technique.
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1. Introduction

The Kuramoto-Sivashinksy (K-S) equation is relevant to a number of physical applications,
including nonlinear chemical kinetics [1], the nonlinear evolution of disturbed flame-fronts
[2], [3], instabilities at the interface between viscous fluids [4] and the flow of liquid films
down a vertical plane [5]. In the notation introduced in [6], travelling-wave solutions (which
are also discussed in a more general setting in [7], [8]) to this equation can be shown, after
one integration, to satisfy the third-order nonlinear ordinary differential equation

ε2 d3u

dz3
+ (1 − 4ε2)

du

dz
= 1 − u2, (1.1)

where z is the travelling-wave coordinate and 0 < ε < 1/2; the −4ε2u′ term in (1.1) is
introduced, in part, to simplify the linearisation analysis to follow shortly (it can be removed
by a rescaling and a redefinition of ε). We shall be concerned in this paper with solutions to this
equation in the singularly perturbed limit ε → 0. Before continuing, we remark that same (but
not all) of the conclusions of our analysis are already known; a necessarily brief discussion of
this is provided later in this section. We thus place some emphasis on the specific methodology
that we have adopted to achieve these results, believing that they illustrate that the ideas and
techniques in question provide an effective and transparent way of describing delicate as-
ymptotic structures associated with differential equations of significant practical importance.
We believe that this work is a further contribution to the development of a widely applicable
framework for analysing problems involving asymptotics beyond all orders, particularly for
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Figure 1. Sections of numerical solutions to (1.1) illustrating (a) a monotonic shock; (b) an oscillatory shock; (c) a
solitary wave.

nonlinear systems. To our knowledge, this study involves the first application of the current
approach to multiple-scales problems.

In part following previous workers, we define various types of solutions as follows:
Monotonic shock
A monotonic solution connecting the two constant solutions u = +1 and u = −1 of (1.1)
(heteroclinic connection; see Figure 1(a)) .
Oscillatory shock
A global, oscillatory solution connecting u = 1 and u = −1 (heteroclinic connection; see
Figure 1(b)).
Local shock (oscillatory or monotonic)
A solution with one or other of the above behaviours in a localised region, but containing
additional exponentially small terms which ultimately causes the solution to diverge from this
structure.
Solitary wave
A solution satisfying

u→ 1 as |z| → ∞ or u → −1 as |z| → ∞, z ∈ R, (1.2)

(homoclinic connection), as illustrated in Figure 1(c).
Detailed numerical studies of such solutions have been performed; see, for example, [9], [10].

If we linearise (1.1) about the solution u = −1 in the limit z → +∞, we obtain the
oscillatory behaviour

u ∼ −1 +Me−z sin(
γ z

ε
+ φ) as z → +∞ (1.3)

for two arbitrary real constants φ ∈ (0, 2π ] and M, where γ = √
1 − ε2. The third solution

to the linearised problem, e2z, is discounted because of its exponential growth as z → +∞.
A similar linearisation about the solution u = 1 produces

u ∼ 1 +Me−2z as z → +∞ (1.4)

for an arbitrary real constant M; since the other two complementary function grow exponen-
tially (in an oscillatory fashion), they are discounted.

In view of the number of arbitrary constants in (1.3) and (1.4), imposing u → −1 as
z→ +∞ is equivalent to imposing a single boundary condition, whereas insisting that u→ 1
as z → +∞ is equivalent to two. The reverse is true when these conditions are imposed as
z → −∞. Such comments have obvious implications regarding the possible existence or
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otherwise of monotonic and oscillatory shocks. For example, if a monotonic shock exists then
it must satisfy

u→ −1 as z → −∞,
u → 1 as z → +∞, (1.5)

whereas for an oscillatory shock we must have

u → 1 as z → −∞,
u→ −1 as z → +∞. (1.6)

In each case, if a solution exists then it is determined only up to translations in z. Given
translational invariance and the comments above, (1.5) can be regarded as being equivalent to
five boundary conditions and (1.6) as three; however, it should be noted that when restricting
attention to odd solutions u(−z) = −u(z), which necessarily satisfy

u = d2u

dz2
= 0 at z = 0, (1.7)

there are actually only four boundary conditions in all when (1.5) and (1.7) hold, whereas for
(1.6) and (1.7) there are still three. The oscillatory shock problem therefore appears to be cor-
rectly specified, whereas the monotonic shock and solitary wave problems are overspecified
by one condition ((1.2) also representing four boundary conditions), but may nonetheless have
solutions for particular values of ε.

We mainly concentrate on solutions to (1.1) such that either u → 1 or u → −1 as z →
+∞. It has been shown (for example in [6], [11], [12] in the limit ε → 0; see also [13],
[14] and [15] for another similar application of the Borel resummation technique applied to
nonlinear wave problems, as used in [11]) that no monotonic shock solution exists for ε > 0;
for ε = 0 the corresponding solution, up to translations in z, is u = tanh z. The non-existence
result for small but non-zero ε follows on accounting for the Stokes phenomenon, whereby
an initially exponentially small oscillatory term is ‘switched on’ across a certain line (called a
Stokes line) in the complex z-plane. This Stokes line crosses the real z-axis, with significant
implications for the asymptotic solutions of (1.1) for physical (i.e., real) values of z (cf. [12]).
However, strong evidence exists (e.g. [9], [10]) to suggest that oscillatory shocks do exist.
We shall clarify such results by showing that, although exponentially small terms are also
switched on across a Stokes line in this case, there are certain solutions for which the term
that would otherwise violate the far-field condition can be suppressed.

The work reported here was completed some time ago (cf. [16, Chapters 3 and 4] and
the paper [17] has since appeared in which equivalent results were derived by a different
technique, and without explicit discussion of the Stokes phenomenon. Our approach provides
a more complete description of the behaviour, a point to which we shall return.

As we have already suggested, our analysis is aided by the analytic continuation of the
solution into the complex z-plane. Even in the monotonic-shock case we are not aware of any
previous analysis of the behaviour of the solution, once a Stokes line has been crossed, other
than the solitary-wave solutions described in [17]. We shall provide such an analysis here,
showing that the solution typically alternates between local oscillatory and monotonic shocks
before ultimately blowing up; if blow-up occurs, it must do so after a local oscillatory shock.
We shall also see that each local shock is centred around the intersection of a Stokes line with
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the real axis, and that this leads to a wide range of possible behaviours. Using asymptotics be-
yond all orders and matched asymptotic expansions, we are therefore able to explain solutions
obtained numerically by Michelson [9] and Hooper and Grimshaw [10], and also to determine
asymptotically what type of solution will arise from a particular set of initial conditions. The
method we develop here can be extended to cater for other nonlinear differential equations,
including the widely-studied model problem in crystal growth considered in, for example,
[18], [19].

2. Multiple-scales representation of the oscillatory shock solution

2.1. EARLY TERMS OF THE MULTIPLE-SCALES EXPANSION

We begin by obtaining asymptotic results for the oscillatory shock solutions to (1.1) that
have previously been obtained numerically ([9], [10]), thereby extending the results of [16,
Chapters 3 and 4], [17] as well as those of Şefik and Ünal [20], who obtained a leading-order
solution by different methods. In this section we analyse (odd) solutions to (1.1) which satisfy
(1.6) and (1.7). We later clarify the relationship between this set of conditions and (1.6). We
obtain the first three terms in the algebraic expansion for u in powers of ε, and subsequently
obtain information about the general term in the asymptotic series; from this we deduce the
behaviour of the late terms in this series in order to apply optimal truncation techniques.

We notice immediately from (1.3) that there are precisely two lengthscales present in oscil-
latory shock solutions, namely z = O(1) and Z ≡ γ z/ε = O(1). This strongly motivates us
to seek a multiple-scales solution of the form u(z) ≡ U(z,Z); similar analysis of the ‘crystal
growth’ problem has been performed by Dewynne and Robinson [19]. Doing so, we express
the K-S equation in the multiple-scales form

γ 3UZZZ + 3εγ 2UZZz + 3ε2γUZzz + ε3Uzzz + (1 − 4ε2)(γUZ + εUz) = ε(1 − U 2). (2.1)

We then seek an expansion solution to (2.1) of the form

U(z,Z) ∼
∞∑
n=0

εnUn(z, Z) as ε → 0. (2.2)

If we now treat z and Z as being independent (as is usual in multiple-scales approaches) then,
when (1.3) is satisfied for some M and φ (as will be the case for oscillatory shock solutions,
for instance; we note that the values of M and φ in (1.3) uniquely specify a solution to (1.1)
and for the time being we think in terms of an initial value problem from z = +∞), we have
the following properties at each order

Un(z+ 2π i, Z) = Un(z, Z), (2.3)

Un(z, Z + 2π) = Un(z, Z), (2.4)

Un(z+ π i, Z + π) = Un(z, Z); (2.5)

(2.3) and (2.5) imply (2.4). These periodicity relations are obviously satisfied by the asymp-
totic limit (1.3), once it has been re-expressed in terms of z and Z. That they are true for
all values of z and Z follows because (1.3) represents an initial-value problem and (2.1) is
invariant under translations of both variables, changing z to z+π i andZ toZ+π (for example,
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as in (2.5)) leaves the defining Equation (2.1) unchanged and preserves the asymptotic form
(1.3), thus mapping the problem into itself, and (2.5) then follows by uniqueness. However,
these properties are not satisfied by the exact solution, because of the interdependence of z
and Z.

The first three terms in the series (2.2) have been obtained [16, Chapters 3 and 4] by
eliminating secularities. For example, writing

U0 = A0(z) cos Z + B0(z) sin Z + C0(z), (2.6)

which is a consequence of the leading-order balance in (2.1), we obtain the following system
of ordinary differential equations for the coefficient functions by eliminating secular terms at
O(ε):

dA0

dz
= A0C0, (2.7)

dB0

dz
= B0C0, (2.8)

dC0

dz
= 1 − C2

0 − 1

2
(A2

0 + B2
0). (2.9)

Imposing only the condition in (1.6) as z→ +∞ (other solutions not satisfying this condition
are discussed in Appendix A), we see that these differential equations yield

Ũ0 = −2 sech z̃ sin Z̃ − tanh z̃, (2.10)

where

z̃ = z − ζ, Z̃ = Z − Z. (2.11)

Here ζ and Z are arbitrary constants with Z ∈ [0, 2π), and we write Un(z, Z) = Ũn(z̃, Z̃).
The next two terms in the expansion (2.2) can similarly be derived in the form

Ũ1 = 19
3 sech z̃ tanh z̃ cos Z̃ − 1

3 sech2z̃ sin 2Z̃, (2.12)

Ũ2 = − 235
18 sech2z̃ tanh z̃+ (

1301
36 sech z̃− 1427

36 sech3z̃
)

sin Z̃

+ 29
9 sech2z̃ tanh z̃ cos 2Z̃ − 1

36 sech3z̃ sin 3Z̃.
(2.13)

Notice that we have omitted complementary function terms in (2.12) and (2.13) since the
relevant ones are multiples of Ũ0z̃ and Ũ0

Z̃
; we can do this without any loss of generality by

permitting ζ and Z to depend on ε. Equations (2.10)–(2.13) evidently satisfy (2.3)–(2.5), and
we note that the further symmetry properties

Ũn(−z̃,−Z̃) = −Ũn(z̃, Z̃), (2.14)

Ũn(z̃, π − Z̃) = (−1)nŨn(z̃, Z̃), (2.15)
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also hold at each order when we absorb complementary function terms appropriately into ζ(ε)
and Z(ε) (indeed, it is the identities (2.14–2.15) which specify the quantities ζ(ε), Z(ε) to any
order for a given solution to (1.1)).

We now give relationships (which we shall need later) between the constants ζ and Z and
the initial conditions (1.3) which are applicable to other boundary-value problems; without
loss of generality (by translating z), we can choose M such that ζ = 0. If we write M ∼
M0 + εM1 + ε2M2, φ ∼ φ0 + εφ1 + ε2φ2 and Z ∼ Z0 + εZ1 + ε2Z2, imposing (1.3) and
matching with (2.10)–(2.13) as z → +∞ then leads to

M0 =−4,Z0 =2π − φ0,M1 =0,Z1 =−φ1 − 19
6 ,M2 =2Z2

1 − 2φ2
1 + 38

3 Z1 + 1301
18 ,Z2 =−φ2.

(2.16)

If we now apply boundary conditions (1.7), we get that ζ = 0 and sin Z = 0 (to all algebraic
orders in ε, cf. (2.14), (2.15)), giving (in view of (2.4)) exactly two odd oscillatory shock
solutions (corresponding to Z = Z(k), k = 1, 2, where Z(1) = 0 and Z(2) = π ). From (2.16),
these then correspond to

φ(1)(ε) = 2π − 19
6 ε +O(ε3), φ(2)(ε) = π − 19

6 ε +O(ε3), (2.17)

respectively, both having

M(ε) = −4 + 470
9 ε

2 +O(ε4). (2.18)

These values are in very good agreement with numerical solutions obtained for oscillatory
shocks, examples of which are shown in Figure 2.

Writing the two odd oscillatory shock solutions as U(1)(z, Z) and U(2)(z, Z), we have at
each order

U(1)n (z, Z) = U(2)n (z, Z + π) = (−1)nU(2)n (z,−Z) (2.19)

and, in view of (2.15),

M(ε) ∼ M(−ε), φ(2)(ε) ∼ π + φ(1)(ε) ∼ 2π − φ(2)(−ε); (2.20)

to all algebraic orders. The invariance of (2.1) under the transformations Z �→ −Z, ε �→ −ε
(which also relies on the fact that z and Z are treated as being independent) plays a key role
in the derivation of such results.

It is natural to ask whether (non-antisymmetric) oscillatory shock solutions exist for other
values of Z, since our current results suggest that they do for any Z because (2.10)–(2.13)
always satisfy (1.6). We shall see later that this is not the case, but to establish this we shall
need to go ‘beyond all orders’ of the algebraic asymptotic expansion (2.2) in order to obtain an
exponentially accurate asymptotic solution. To achieve this, we shall truncate the expansion
optimally after finding its smallest term n = N(ε) and then perform an asymptotic analysis
on the remainder; as usual, the remainder is then exponentially small (see [21, Chapter 1] for
a general discussion of such matters and [12] for further examples). The need to go beyond
all orders can readily be seen, as follows: if (2.2) is the asymptotic expansion of a particular
solution to (1.1) then

U(z,Z) ∼
∞∑
n=0

εnUn(z− ζ, Z − Z) as ε → 0 (2.21)
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Figure 2. Numerical oscillatory shock solutions to
(1.1) subject to (1.3), with ε = 0·045, M = −4 +
470

9 ε
2, φ(1) = 6·145, φ(2) = 3·003. The choice

of M was based on the asymptotic result (2.18) and
the values of φ were found by iterating on the initial
value problem (1.3) until the required behaviour as
z → −∞ was obtained.

Figure 3. log |Bn,k | against n for k = 0, 1, . . . 5. The
curves for k = 0, 1, 2 are almost indistinguishable
for large n.

gives, for the same functions Un, the asymptotic expansion of a two-parameter (ζ and Z)
family of solutions. When (2.2) is taken to be the asymptotic expansion of an oscillatory
shock, the existence of a single such solution implies that the Un(z, Z) (necessarily satisfying
Un → 0 as z → ±∞ for n ≥ 1) exist to all orders n. It follows that, for any ζ and Z, (2.21)
also satisfies U → ∓1 as z → ±∞ to all orders.
Hence, only on going beyond all orders (in our case using optimal truncation) does the non-
existence of a one-parameter family of distinct oscillatory shocks emerge asymptotically. We
take the parameter to be Z and, for given ζ , solutions exist only for discrete values of Z;
arbitrary translations of z are of course permitted, but we shall not view these as yielding
distinct solutions (without loss of generality we again set ζ = 0 by translating z by ζ and
replacing Z by Z + γ ζ/ε).
2.2. GENERAL TERM IN THE MULTIPLE-SCALES EXPANSION

2.2.1. Formulation
We now consider the form of the general term Un(z, Z) in (2.2) for the odd oscillatory shock
solution with ζ = Z = 0, the results immediately generalising to the two parameter family
(2.21). We can see from (2.10) that the two singularities in z of U0 which are closest to the
real axis are located at z = ± iπ

2 ; we shall see later how contributions from these singularities
dominate the late terms in (2.2) sufficiently close to the real z-axis. To do so we must first
determine the behaviour of each term in (2.2) as z approaches one of these singularities.

Substituting (2.2) in (2.1) and equating terms of O(εn) gives, for n ≥ 2, the recursive
system of equations
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UnZZZ + UnZ = −3Un−1ZZz − 3Un−2Zzz − Un−3zzz − Un−1z + 4Un−2Z + 4Un−3z + Un−2ZZZ

+3Un−3ZZz −
n−1∑
j=0

UjUn−1−j +
[ n2 ]∑
j=1

(2j − 2)!
22j−1j !(j − 1)! (Un−2jZZZ + Un−2jZ )

+
[ n2 ]−1∑
j=1

(2j − 2)!
22j−1j !(j − 1)! (−Un−2j−2ZZZ + 3Un−2j−2Zzz − 4Un−2j−2Z ), (2.22)

where Un ≡ 0 for n < 0, [n2 ] is the integer part of n2 and the
∑[ n2 ]−2
j=1 sum is taken to be absent

for n = 2 and 3. The form of solution for each n can be shown to be

Un(z, Z) =
n+1∑

k=−(n+1)

An,k(z)e
kiZ. (2.23)

The terms in (2.23) with k = 0,±1 represent the complementary function in the solution to
(2.22) and the associated coefficient functions An,k(z) are determined by the elimination of
secular terms in Un+1(z, Z). The other terms, for which k �= 0, ±1, are the particular integrals
in the solution to (2.22). The behaviour of the functions An,k(z) in the limit z → iπ

2 will
provide us with the information which we shall use later in Section 2.2.3. The corresponding
results for the other closest singularity, at z = − iπ

2 , can be deduced straight forwardly from
symmetry considerations.

2.2.2. Solution near the singularity z = iπ
2

It follows from (2.10), (2.12) and (2.13) that Un has a singularity of the form (z − iπ
2 )

−(n+1)

and it can be shown by induction that this behaviour applies for all n. We therefore seek a
local solution to (2.22) in the form

Un(z, Z) ∼ ψn(Z)

(z − iπ
2 )
n+1

as z → iπ

2
, (2.24)

giving (from (2.22)) that

d3ψn

dZ3
+ dψn

dZ
= 3n

d2ψn−1

dZ2
− 3n(n− 1)

dψn−2

dZ
+ n(n− 1)(n− 2)ψn−3 + nψn−1

−
n−1∑
j=0

ψjψn−1−j .

(2.25)

In view of (2.23) we can write

ψn(Z) =
n+1∑

k=−(n+1)

Bn,ke
kiZ, (2.26)

the Bn,k being as yet undetermined constants. The leading-order solution (2.10) implies

B0,0 = −1, B0,1 = 1, B0,−1 = −1, (2.27)

consistent with (2.25) for n = 1, and from (2.12) we also have that
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B1,0 = 0, B1,1 = −19i/6, B1,−1 = −19i/6, B1,2 = −i/6, B1,−2 = i/6. (2.28)

Substituting (2.26) in (2.25) and equating coefficients of ekiZ leads to the difference equation

−ik(k2 − 1)Bn,k = −n(3k2 − 1)Bn−1,k − 3n(n− 1)ikBn−2,k + n(n− 1)(n− 2)Bn−3,k

−
n−1∑
j=0

p2∑
p=p1

Bj,pBn−1−j,k−p (2.29)

for n ≥ 2, k = 0,±1, . . . ,±(n + 1). The summation limits p1 and p2 are given by p1 =
max{−(j + 1), k − n + j} and p2 = min{j + 1, k + n − j}, and we have that Bn,k ≡ 0
for n < 0 and for |k| > n + 1. For each n, the coefficients Bn−1,k for k = 0,±1 and Bn,k
for k = ±2,±3 . . . ± (n + 1) can be obtained from (2.29). This corresponds to the terms in
exp(kiZ) for k = 0,±1 forming the complementary function in (2.22), so those Bn−1,k are
obtained via secularity conditions; other values of k correspond to the particular integral.

The coefficients Bn,k have been calculated iteratively from (2.29) up to a large value of n
using exact arithmetic in Maple. The following observations can be made:
OB(1). Bn,−k = (−1)n+kBn,k.
OB(2). Bn,k/(−i)n is real and positive for k > 0.
OB(3). Bn,0 = 0 for n odd.
OB(4). Bn,0/in is real and negative for n even.
OB(5). As n becomes large, those Bn,k with |k| > 2 are negligible in comparison with those
for |k| ≤ 2. Those with |k| ≤ 2 are all comparable.

OB(3) is a trivial consequence of OB(1), which in turn can easily be proved by induction; the
first parts of OB(2) and OB(4) are immediate from (2.29) and the second parts can be verified
a posteriori (see later); OB(5) is illustrated in Figure 3 and is justified in Appendix B.

Using these observations in the limit n → ∞, we can reduce the system (2.29) of 2n + 3
difference equations to a system of three equations, namely those corresponding to k = 0, 1, 2.
We shall now derive expressions for Bn,0, Bn,1 and Bn,2 as n→ ∞, which suffice to determine
the asymptotic form for the general term Un as z → iπ

2 , n → ∞, given (2.24), (2.26), OB(1)
and OB(5).

A consequence of (2.29) is that the terms which are linear in the B’s are each of the order
np+1Bn−p,k as n → ∞ for some p. Following a similar approach to that given in Chapman
et al. [12] leads us, in order to balance these linear terms, to write the Bn,k in the form

Bn,0 = −in�(n+ α0 + 1)λn,0, n even,

= 0, n odd,
(2.30)

Bn,k = (−i)n�(n+ αk + 1)λn,k, k ≥ 1, (2.31)

where the αk are independent of n and the λn,k are positive andO(1) as n→ ∞. We now seek
 k = limn→∞ λn,k for k = 0, 1, 2, introducing the expansions λn,k ∼  k + 1

n
(lk + (−1)nmk)

as n→ ∞; we can set m0 = 0 (see (2.30)).
In view of OB(5), we anticipate that we may write αk = α for k = 0, 1, 2 (cf. Appendix B,

where it is also shown that αk < α for k > 2, and Figure 3). Substituting k = 0 in (2.29)
gives, we have neglecting the Bn,k with |k| > 2 because of OB(5),

nBn−1,0 + n(n− 1)(n− 2)Bn−3,0 ∼ 2(B0,−1Bn−1,1 + B0,0Bn−1,0 + B0,1Bn−1,−1) (2.32)



206 K.L. Adams et al.

for n odd; for n even, (2.29) is identically zero for k = 0. Substitution of the initial values
from (2.27) and using (2.30), (2.31) and OB(1), (2.32) implies at leading order that

(−2α − 2) 0 + 4 1 = 0 as n→ ∞. (2.33)

The analogue of (2.32) for k = 1 is

−2nBn−1,1 +n(n− 1)(n− 2)Bn−3,1 − 3in(n− 1)Bn−2,1 ∼ 2(B0,−1Bn−1,2

+B0,0Bn−1,1 + B0,1Bn−1,0).
(2.34)

When (2.30) and (2.31) are used, (2.34) simplifies at leading order to

(2 − α) 1 + 2 2 + 0 + (−1)n+1 0 + 6(−1)nm1 = 0. (2.35)

Finally, for k = 2 the leading-order approximation to the difference equation (2.29) reduces

−6iBn,2 +11nBn−1,2 − n(n− 1)(n− 2)Bn−3,2 + 6in(n− 1)Bn−2,2

∼ 2(B0,0Bn−1,2 + B0,1Bn−1,1),
(2.36)

and a similar analysis as n→ ∞ leads to

(α + 1) 2 − 1 + 24(−1)nm2 = 0. (2.37)

By considering separately the odd and even (in n) versions of (2.33), (2.35) and (2.37), we
obtain m1 =  0/6, m2 = 0 and, more importantly,

(−2α − 2) 0 + 4 1 = 0, (2.38)

(2 − α) 1 + 2 2 + 0 = 0, (2.39)

(α + 1) 2 − 1 = 0. (2.40)

The three non-trivial possible solutions of these are

α = 3, 1 = 2 0, 2 = 1
2 0, (2.41)

α = −1, 2 = − 1
2 0, 1 = 0, (2.42)

α = −2, 1 = − 1
2 0, 2 = 1

2 0, (2.43)

and we note that the values of  0 will differ in these three separate cases. From (2.30)–(2.31)
the solution with the largest α dominates for large n, so (2.42) and (2.43) represent negligible
contributions to the Bn,k compared to (2.41); this is consistent with (2.30) which implies that
the  k must all be positive for the dominant large n expression. The relationships between
the  k in (2.41) are in very good agreement with the exact results obtained via Maple (see
Figure 4), from which  k can be estimated as

 0 ≈ 0·173,  1 ≈ 0·346,  2 ≈ 0·086; (2.44)

the value of  1, say, can be found only by such an approach of iterating (2.29) all the way up
to a suitably large value of n – it cannot be determined purely from the asymptotic analysis
of the n → ∞ limit. Once  1 is known, the values of  2 and  0 are given by (2.41). These
values of  k can be shown to be consistent with the value C = 0·26 obtained by Yang [17].
Combining the results so far, we have that
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Figure 4. λn,k against n for k = 0, 1, 2

Un ∼ (n+ 3)! 1(−i)n{eiZ + (−1)n+1e−iZ − 1
4(1 + (−1)n)+ 1

4(e
2iZ + (−1)ne−2iZ)}

(z − iπ
2 )
n+1

, (2.45)

as z → iπ
2 , n→ ∞. The corresponding result at the other nearest singularity z = − iπ

2 is

Un ∼ (n+ 3)! 1in{e−iZ + (−1)n+1eiZ − 1
4 (1 + (−1)n)+ 1

4 (e
−2iZ + (−1)ne2iZ)}

(z+ iπ
2 )
n+1

, (2.46)

as z → − iπ
2 , n → ∞.

We end this section by noting that the validity of the latter parts of the observations OB(2)
and OB(4) for large n is implicit in our calculation of the realO(1) quantities  0, 1 and 2.
For n = O(1), they are apparent from inspection of the exact values obtained for the Bn,k.

2.2.3. Extension to the rest of the complex z-plane
In order to generalise the representation (2.45) for Un to other values of z, particularly for
real z, we follow an approach similar to that of Chapman et al. [12]. In view of the results of
Section 2.2.2, we seek a solution of the form

Un(z, Z) ∼ (−in(n+ α)!
(z − iπ

2 )
n+α+1

3∑
k=−3

fn,k(z)e
kiZ as n→ ∞, (2.47)

where the (z − iπ
2 )

−(n+α+1) pre-factor is guided by (2.24) and we remark that including the
α in the exponent (rather than including that factor within the fn,k) simplifies subsequent
calculations. It follows from (2.24) that fn,k = O((z − iπ

2 )
α) as z → iπ

2 and, from (2.45),
that α = 3; however, we continue to perform a general analysis since this will enable us to
interpret the solutions (2.42)–(2.43). We shall also confirm our earlier assertion that the terms
for which |k| ≥ 3 are negligible in comparison with those for which |k| ≤ 2 (nevertheless, the
terms with k = ±3 must be included in (2.47), since we shall require information from these
correction terms). It is again necessary to split the solution into odd and even terms in n, and
we write terms
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fn,k(z) = F (0)k (z)+ (−1)nG(0)k (z)+
1

n

(
F
(1)
k (z)+ (−1)nG(1)k (z)

)
+ . . . as n→ ∞. (2.48)

It follows from (2.15) that

fn,−k(z) = (−1)n+kFn,k(z), (2.49)

and hence that

G
(j)

k (z) = (−1)kF (j)−k (z). (2.50)

Substituting (2.47) and (2.48) in (2.22) and retaining the first two orders yields, after
significant simplification,

3∑
k=−3

(k − k3)
(
(n+ 3)(F (0)k + (−1)nG(0)k )+ F (1)k + (−1)nG(1)k

)
ekiZ =

3∑
k=−3

{
(−3k2 + 3k)

(
(n+ 3)F (0)k + F (1)k

)
+ (−1)n(3k2 + 3k)

(
(n+ 3)G(0)k +G(1)k

)

+(3k2 − 6k + 2)(z − iπ
2 )F

(0)′
k + (−1)n(−3k2 − 6k − 2)(z − iπ

2 )G
(0)′
k

−2U0(z, Z)(z− iπ
2 )(F

(0)
k + (−1)n−1G

(0)
k )

}
ekiZ,

(2.51)

where U0(z, Z) is given by (2.10).
Equating coefficients of exp(kiZ) at O(n) in (2.51) gives

F
(0)
−3 = G(0)−3 = F (0)−2 = F (0)−1 = G(0)1 = G(0)2 = F (0)3 = G(0)3 = 0, (2.52)

and, at O(1), the system of ordinary differential equations

F
(0)′
0 = − tanh z F (0)0 − i sech z F (0)1 (2.53)

F
(0)′
1 = −2i sech z F (0)0 + 2 tanh z F (0)1 + 2i sech z F (0)2 (2.54)

F
(0)′
2 = i sech z F (0)1 − tanh z F (0)2 (2.55)

results. We also obtain equations for the G(0)k which are consistent with (2.50) and, using
(2.52), the following information on the correction terms:

F
(1)
−3 = F (1)−2 = G(1)2 = G(1)3 = 0, G(1)−3 = − i

3(z − iπ
2 )sech zG(0)−2,

F
(1)
−1 = − i

3(z − iπ
2 )sech z F (0)0 , G

(1)
1 = i

3(z − iπ
2 )sech zG(0)0 , F

(1)
3 = i

3 (z− iπ
2 )sech z F (0)2 .

(2.56)

The general solution to (2.53)–(2.55) takes the form

F
(0)
0 = iK1

(
3 sech z − cosh z − 3(z − iπ

2
)sech z tanh z

)
+K2sech z− iK3 sech z tanh z,

(2.57)

F
(0)
1 = K1

(
2 sinh z cosh z+ 3 tanh z + 3(z − iπ

2
) sech2z

)
+K3 sech2z, (2.58)
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F
(0)
2 =−iK1

(
3 sech z − cosh z − 3(z − iπ

2
)sech z tanh z

)
+K2 sech z + iK3 sech z tanh z,

(2.59)

where K1,K2 and K3 are arbitrary constants. As z → iπ/2, the K1 terms are O((z − iπ
2 )

3),
the K2 terms are O((z − iπ

2 )
−1) and the K3 terms O((z − iπ

2 )
−2). Thus to match with (2.41),

(2.45) we require

α = 3,K1 = − 5
4 0, K2 = K3 = 0 (2.60)

and this term dominates the large-n behaviour. However, the other two terms will also in
general be present, but will be algebraically smaller in n (see (2.47)). These are

α = −1, K2 = − i
2 0, K3 = 0, (2.61)

α = −2, K3 = 1
2 0, (2.62)

where the  0 are those arising in (2.42)–(2.43), with distinct values for each of these roots.
To summarise, the dominant behaviour for the Un as n → ∞ is given by setting α = 3 in

(2.47) with the fn,k’s given by (2.48), (2.49), (2.52) and

F
(0)
0 = −5i

4
 0

(
3 sech z− cosh z − 3

(
z− iπ

2

)
sech z tanh z

)
= G(0)0 = −F (0)2 = −G(0)−2,

(2.63)

F
(0)
1 = −5

4
 0

(
2 sinh z cosh z + 3 tanh z + 3

(
z− iπ

2

)
sech2z

)
= −G(0)−1. (2.64)

The constant  0 is given numerically by (2.44) as 0·173. The correction terms F (1)k and G(1)k
are not required for our subsequent leading-order calculations, though their inclusion here was
necessary in order to derive Equations (2.53)–(2.55) for the F (0)k and G(0)k . In particular, we
have confirmed that, since F±3,0 = G±3,0 = 0, the fn,±3 are of the same order as fn,k/n with
|k| ≤ 2, in the limit n→ ∞.

We can now use symmetry arguments to deduce that the contribution to Un from the
singularity at z = − iπ

2 is given by

Un ∼ in(n+ 3)!
(z + iπ

2 )
n+4

k=2∑
k=−2

f̂n,k(z)e
kiZ, (2.65)

where we can infer from (2.63), (2.64) that as n→ ∞

f̂n,0 ∼ 5i

4
 0(1 + (−1)n)

(
3 sech z − cosh z − 3

(
z+ iπ

2

)
sech z tanh z

)
,

f̂n,−1 = (−1)n+1f̂n,1 ∼ −5i

4
 0

(
2 sinh z cosh z + 3 tanh z + 3

(
z+ iπ

2

)
sech2z

)
,

f̂n,−2 = (−1)nf̂n,2 ∼ −5i

4
 0

(
3 sech z− cosh z− 3

(
z + iπ

2

)
sech z tanh z

)
.

(2.66)
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The full expression Un as n→ ∞ with z real is given by the sum of (2.47) and (2.65). There
are similar contributions toUn from the singularities at z = σm, where σm = (2m−1)iπ/2 for
integer m; since these contain the factor (z − σm)−n as n → ∞, the others are exponentially
smaller near the real z-axis than those already considered (namely m = 0, 1) and can be
discounted.

3. Optimal truncation

3.1. INTRODUCTION

We are concerned with the initial-value problem with data prescribed as z → +∞, in which
(1.1) is subject to (1.3) with specified values ofM and φ. We are now in a position to truncate
the expansion (2.21) optimally, the Un being those whose properties we have discussed in
Section 2.2 and where we take ζ = 0. By comparing successive terms of the asymptotic series
(2.2) using (2.47), we find that the least term occurs near n = N , where |εN/(z − iπ

2 )| ∼ 1.
Thus if z− iπ

2 = reiω(r, ω ∈ R) then

N = r

ε
+ ν (3.1)

where ν ∈ [0, 1) is included to ensure that N is an integer. We shall be interested in the
behaviour of U close to z = 0, so we fix r = π

2 and vary ω about −π
2 (which is the Stokes

line); the optimal truncation point of (2.65) at z = 0 is the same as that of (2.47). Henceforth
we therefore take

N = π

2ε
+ ν. (3.2)

We now write the exact expression

U =
U∑
n=0

εnUn(z, Z̃)+ RN(z, Z̃), (3.3)

where RN , the remainder after optimal truncation, is exponentially small. Substituting (3.3) in
(1.1) yields, as ε → 0,

RN
Z̃Z̃Z̃

+ RN
Z̃

+ ε
(

3RN
Z̃Z̃z

+ RNz + 2U0RN

)
∼ εN+1(UN+1

Z̃Z̃Z̃
+ UN+1

Z̃

+εN+2(−3UN
Z̃zz

− UN−1zzz )− εN+3UNzzz

(3.4)

retaining only those terms which will contribute at leading order within the Stokes layer (as
always, correction terms such as RN are necessarily determined asymptotically by a linear
problem, which aids significantly the study of beyond-all-orders effects).

We intend to show that certain terms in the remainder are ‘switched on’ across a Stokes
line, which in this instance intersects the real z-axis at the origin. To do this, we first calculate
the remainder within the Stokes layer (i.e., the narrow region in which the Stokes smoothing
occurs) and find that these terms are switched on via an error function smoothing, as is typical
in both linear [22] and nonlinear [12] problems. We then proceed to solve the differential
equation for the remainder outside the Stokes layer, leading to different multiples of solutions
to the homogeneous equation occurring on different sides of the Stokes layer. Thus, as usual,
these apparent discontinuities in the remainder are smoothed across the Stokes layer.
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3.2. SOLUTION TO THE REMAINDER EQUATION WITHIN THE STOKES LAYER

For the calculation pertaining to monotonic shock solutions to the K-S equation ([12], [16,
Chapter 4]) the error function smoothing of the Stokes discontinuity occurs across a Stokes
layer of width O(ε

1
2 ). We shall now show that a similar situation arises for the oscillatory

shock solution being studied here, so we introduce ẑ = ε− 1
2 z and defineW(ẑ, Z̃) ≡ RN(z, Z̃).

The leading-order balance from (3.4) then reduces as ε → 0, N → ∞ to

WZ̃Z̃Z̃+ WZ̃ + ε 1
2 (3WZ̃Z̃ẑ +Wẑ) ∼

εN+1(UN+1
Z̃Z̃Z̃

+ UN+1
Z̃
)+ εN+2

(
−3UN

Z̃zz
− UN−1zzz

)
− εN+3UNzzz .

(3.5)

We denote by rhs+ the contribution to the right-hand side of (3.5) arising from the sin-
gularity at z = iπ

2 , which is given by (2.47). We can expand (3.5), using (2.47), (3.2) and
Stirling’s formula, to give

rhs+ ∼4i 0ε
− 7

2 e− π
2ε e−iz/εe−z2/(πε)

2∑
k=−2

(
(k − k3)fN+1,k(z)+(3k − 1)fN,k(z)−FN−1,k(z)

)
ekiZ̃,

(3.6)

in which the exp(−iz/ε−z2/(πε)) term arises from the small z expansion of the (z− iπ
2 )

−π/(2ε)

factor in UN . Noting that exp(−iz/ε) ∼ exp(−i(Z̃ + Z)), we may simplify this to

rhs+ ∼ 4i 0ε
− 7

2 e− π
2ε e−iZe−ẑ2/π

2∑
k=−2

cN,k−1e(k−1)iZ̃ (3.7)

as ε → 0 with ẑ = O(1), where from (2.63), (2.64) we can calculate that

cN,−3 =(−1)N+115i, cN,−2 =(−1)N 45iπ
16 , cN,−1 = 5i

2 , cN,0 = 15iπ
16 , cN,1 =− 5i

2 , cN,2 =cN,3 = 0.

(3.8)

The Stokes layer scaling ẑ = ε− 1
2 z is motivated by the e−z2/(πε) term in (3.6).

Again using (3.2), we similarly obtain from (2.65) that the contribution from the singularity
at z = − iπ

2 is, in an obvious notation,

rhs− ∼ 4i 0ε
− 7

2 e− π
2ε eiZe−ẑ2/π

2∑
k=−2

cN,−k−1e(k+1)iZ̃, (3.9)

as ε → 0 with z = O(1). We can now formulate the leading-order remainder equation within
the Stokes layer.

Adding the contributions from the two singularities, we obtain

WZ̃Z̃Z̃ +WZ̃ + ε 1
2 (3WZ̃Z̃ẑ +Wẑ) ∼ 4i 0ε

− 7
2 e− π

2ε e−ẑ2/π

3∑
k=−3

(
cN,ke

−iZ + cN,−keiZ)
ekiZ̃.

(3.10)

This motivates us to seek a solution to (3.10) of the form

W(ẑ, Z̃) ∼ ε−4e− π
2ε

1∑
k=−1

qN,k(ẑ)e
kiZ̃, (3.11)
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valid for ẑ = 0(1), the terms for k = ±2,±3 in (3.10) being a factor ε
1
2 smaller in magnitude;

moreover, such terms in W tend to zero as ẑ → ±∞ and thus do not switch on anything as
the Stokes layer is crossed. The terms in (3.11) are governed by

1∑
k=−1

(1 − 3k2)
dqN,k

dẑ
ekiZ̃ = 4i 0e−ẑ2/π

(
5i

2
(e−iZ − eiZ)(e−iZ̃ − eiZ̃)+ 15iπ

16
(e−iZ + eiZ)

)
,

(3.12)

so that

qN,0(ẑ) = 15π2

4
 0 cos Z erfc

(
ẑ√
π

)
,qN,1(ẑ) = −5π i 0 sin Z erfc

(
ẑ√
π

)
= −qN,−1(ẑ),

(3.13)

where we have imposed the matching conditions qN,k → 0 as ẑ → +∞. Thus, from (3.11),
we find that the leading-order expression for the remainder within the Stokes layer is given in
terms of W by

W ∼ 5π 0

2
ε−4e− π

2ε

(
4 sin Z sin Z̃ + 3π

2
cos Z

)
erfc

(
ẑ√
π

)
. (3.14)

3.3. SOLUTION OUTSIDE THE STOKES LAYER

As can be seen from the exponential decay of the right-hand side of (3.10) as ẑ → ±∞, the
remainder equation (3.4) is homogeneous to all relevant orders outside the Stokes layer, and
the defining equation is then, to all desired orders,

RN
Z̃Z̃Z̃

+ RN
Z̃

+ ε(3RN
Z̃Z̃z

+ RNz + 2U0RN) = 0. (3.15)

Since U0 is given in (2.10), standard multiple scales techniques lead to

RN(z, Z̃) = a1RN1(z, Z̃)+ a2RN2(z, Z̃)+ a3RN3(z, Z̃), (3.16)

where a1, a2 and a3 are arbitrary (exponentially small) constants and, to leading order as
ε → 0,

RN1 ∼ sech z cos Z̃, (3.17)

RN2 ∼ −2 tanh z sech z sin Z̃ + sech2z, (3.18)

RN3 ∼2(3 sech z−cosh z−3z tanh z sech z) sin Z̃+2 sinh z cosh z+3 tanh z+3z sech2z.

(3.19)

Matching (3.14) as ẑ→ −∞ with (3.16) as z → 0− gives for z < 0,

a2 ∼ 15π2

2
 0ε

−4e− π
2ε cos Z, a3 ∼ 5π 0ε

−4e− π
2ε sin Z, (3.20)

with a1 negligible in comparison. An exponentially small term

5π 0ε
−4e− π

2ε

(
3π

2
cos ZRN2(z, Z̃)+ sin ZRN3(z, Z̃)

)
(3.21)
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is thus switched on as the Stokes line is crossed from positive to negative values of z.
We now note that RN1 and RN2 are constant multiples of the derivatives of U0 with respect

to Z̃ and z, respectively, as is to be expected in view of the translational invariance of (2.1).
The terms RN1 and RN2 therefore represent translations in the origin of the independent vari-
ables Z̃ and z, respectively. The most important term that may get switched on is thus RN3 ,
which contains terms which grow exponentially in z (see (3.19)). Only for the odd solutions
described in Section 2.1, for which Z = 0 or π , do we have a3 = 0, indicating that bona fide
oscillatory shock solutions occur in these cases only.

4. Effect of the Stokes switching on possible solutions

4.1. OSCILLATORY SHOCK SOLUTIONS: SECONDARY SHOCKS

Our aim in this section is to give an asymptotic description of solutions containing alternating
sequences of local oscillatory and monotonic shocks, such as that illustrated in the numerical
solution of Figure 5. This will enable us to give a rather complete analysis of the initial value
problem in which (1.1) is subject to (1.3) or (1.4), with 0 < ε � 1. We start by describing the
behaviour in the local monotonic shock which follows an oscillatory shock.

We saw in Section 3 that an exponentially small multiple of RN3 is generally switched on
across the Stokes line. For z < 0 we can write the solution as

U(z,Z) ∼ U0(z, Z)+ · · · + εNUN(z, Z)+ ρ(ε)RN3(z, Z), (4.1)

where U0 is given in (2.10) and ρ satisfies

ρ ∼ 5π 0ε
−4e− π

2ε sin Z a ε → 0; (4.2)

Z is related to φ by (2.16). We now aim to examine the effect that altering Z, and hence ρ,
has on the solution for negative values of z. We shall see that this can lead, for example, to the
generation of a local monotonic shock solution, spaced a distance O(1/ε) from the oscillatory
shock (cf. Figure 5).

For z large and negative, we see that from (2.10), (3.19) and (4.1) that we may write

U(z,Z) ∼ 1 − 4ez sin(Z − Z)+ · · · − 1

2
ρe−2z. (4.3)

The exponentially growing term switched on across the Stokes line thus ultimately contributes
at leading order; this occurs for z2 = O(1) (corresponding to an anti-Stokes line), where

z = z2 + 1

2
log |ρ| − log 2 = z2 − π

4ε
+ 2 log

(
1

ε

)
+O(1). (4.4)

In view of (4.3), for z2 = O(1) we can write

U(z,Z) ∼ Û(z2; ε)+ |ρ| 1
2S(z2, Z). (4.5)

Here the second term is exponentially small and Û is the solution to (1.1) (with z replaced by
z2) which satisfies

Û(z2) ∼ 1 − 2sgn(ρ)e−2z2 as z2 → +∞ (4.6)
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Figure 5. ‘Multiple shock’ solution obtained numer-
ically for ε = 0·045,M = −4, φ = 4·0.

Figure 6. Numerical solution showing blow-up after
one local oscillatory shock; ε = 0·045, M = −4,
φ = 1·0.

(cf. (1.4) with M = −2 sgn(ρ)). From (4.2) we have ρ > 0 for Z ∈ (0, π) and ρ < 0
for Z ∈ (π, 2π); for ρ > 0, the condition (4.6) is identical to that applicable in the case of
monotonic shock solutions. Writing Û ∼ Û0(z2) as ε → 0, we have

dÛ0

dz2
= 1 − Û 2

0 . (4.7)

Given (4.6), this has the solution

Û0 = tanh z2, (4.8)

for ρ > 0 and

Û0 = coth z2 (4.9)

for ρ < 0, which is singular at z2 = 0, i.e., at

z = − π
4ε

+ 2 log

(
1

ε

)
+O(1); (4.10)

the solution blows up near this value of z, a further rescaling z2 = εξ, Û = 5̂/ε being
required to describe the local behaviour. This gives, to leading order,

d35̂0

dξ 3
+ d5̂0

dξ
= −5̂2

0, (4.11)

5̂0 ∼ 1

ξ
as ξ → +∞, (4.12)

where we have matched with (4.9) to obtain (4.11). This determines 5̂0 only up to a translation
of ξ ; specifying it completely requires knowledge of Û1(z2). The solution to (4.11) blows up
according to
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5̂0 ∼ 60

(ξ − ξ0)3
as ξ → ξ+

0 (4.13)

for some ξ0; we believe this to be generic for real solutions to (1.1). This type of behaviour for
ρ < 0 has been confirmed by closer inspection of numerical solutions, such as that shown in
Figure 6.

For ρ > 0, the solution (4.8) is well-behaved for z2 = O(1), though a further Stokes line
occurs in the neighbourhood of z2 = 0 (cf. [12]), generated by the singularities in (4.8) at
z2 = ±iπ/2. It has been shown in [16, Chapter 4], [12] that on crossing the Stokes line at
z2 = 0, going from positive to negative values of z2, an additional exponentially small (but
exponentially growing) term

2πL

ε2
e− π

2ε cosh z2 cos Z2 (4.14)

is switched on in Û(z2, Z), where L ≈ 1·25 and Z = Z2 + γ

2ε log (|ρ|/4), i.e., Z2 = z2/ε. We
can therefore write

Û ∼ tanh z2 + · · · +H(−z2)
2πL

ε2
e− π

2ε cosh z2 cos Z2 as ε → 0, (4.15)

where H is the Heaviside unit step function.
In the case ρ > 0, we must now consider the exponentially small oscillatory term S in

(4.5), which is generated by the second term in (4.3). Writing S ∼ S0(z2, Z)+ εS1(z2, Z), we
can obtain S0 by a multiple-scales calculation on the homogeneous remainder equation (cf.
(3.15)).

SZZZ + SZ + ε(3SZZz2 + Sz2 + 2Û0S) = 0, (4.16)

where Û0 = tanh z2 (from (4.8)), given that

S0(z2, Z) ∼ −2ez2 sin(Z − Z) as z2 → +∞. (4.17)

This yields (cf. [12])

S0 = −4 cosh z2 sin(Z2 + θ) (4.18)

where, from (4.4), θ = 1
ε
( 1

2 log |ρ| − log 2)−Z (modulo 2π ). We can now write the solution
for u in the case z2 = O(1), ρ > 0

in the form

U(z2, Z) ∼ tanh z2 − 4|ρ| 1
2 cosh z2 sin (Z2 + θ)+H(−z2)

2πL

ε2
e− π

2ε cosh z2 cos Z2,

(4.19)

as ε → 0, having used (4.5), (4.15) and (4.18) to obtain this result. Note that in (4.19) the
algebraic expansion involving Û1 etc. has been omitted, so the expression is not an asymptotic
one in the usual sense. It does, however, contain all the terms in the asymptotic expansion that
we need, namely the leading-order solution and the dominant exponentially growing terms;
we write expression of this type on a number of occasions.

Hence, the solution for z < 0 differs in form depending on the sign of ρ, which from
(4.2) and (2.44) is seen to be that of sin Z. The case ρ < 0 leads to blow-up and ρ > 0
to a monotonic shock-type solution, with further implications to be discussed in Section 4.2.



216 K.L. Adams et al.

The case ρ = 0 corresponds to the oscillatory shock solution (consistent with the values of
Z = 0, π obtained in Section 2.1 on imposing the constraint that the solution be odd).

We now extend our approach to the whole of the real z-axis, and show that the solution
typically alternates between local oscillatory and monotonic shocks as z decreases, unless and
until the solution blows up, which can only occur after a local oscillatory shock.

4.2. OSCILLATORY SHOCK SOLUTIONS: MULTIPLE SHOCKS

4.2.1. Derivation of difference equations
We have seen how, as z decreases along the real axis, it is possible to obtain a local oscillatory
shock followed after a distance z = O(1/ε) by a local monotonic shock. We now extend the
analysis to encompass multiple local shocks of alternating type.

We start by summarising the ‘input-output’ relationships for a local shock:
(i) Local oscillatory shock (see Section 3).

Suppose we choose the origin of z such that we have the asymptotic representation

U(z,Z) ∼ −1 +M(1)(ε)e−z sin(Z + φ)+ A(ε)e2z as z → ∞, ε → 0, (4.20)

whereM(1)(ε) is the exact value ofM in (1.3) corresponding to the odd oscillatory shock
with φ = φ(1)(ε) (the expansions for which are given by (2.17)–(2.18), and where A(ε)
is exponentially small). Then, using (3.19), we have

U(z,Z) ∼ Û(z, Z)+ 2A(ε)RN3(z, Z) for z = O(1) with z > 0, (4.21)

where Û (z, Z) is the solution to the initial-value problem in which (1.1) is subject to

Û(z, Z) ∼ −1 +M(1)(ε)e−z sin(Z + φ) as z→ +∞. (4.22)

The leading-order solution for Û is thus of the form given in (2.10) and a quantity

ρ(ε)RN3 (4.23)

is switched on as the Stokes line at z = 0 is crossed, where from (4.2),

ρ(ε) ∼ −5π 0ε
−4e− π

2ε sin(φ − φ(1)), (4.24)

ρ being zero to all orders when φ = φ(1) or φ = φ(2). Hence, in view of (3.19),

U(z,Z) ∼ 1 +M(1)(ε)ez sin(Z + φ − 2φ(1))− C(ε)e−2z as z→ −∞, ε → 0, (4.25)

where the exponentially small quantity C is given by

C(ε) ∼ A(ε)+ ρ(ε)/2. (4.26)

If C > 0 a local monotonic shock is then generated as z decreases, whereas if C < 0
blow-up occurs, in each case near z = − 1

2 log(2/|C|). It should be emphasised that (4.20)
and (4.25) (and (4.27) and (4.28) below) are matching conditions – they do not describe
the behaviour of an exact solution as |z| → ∞, but rather the outer limits of the z = O(1)
asymptotic solutions.
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Figure 7. Schematic of the solution u against z in three different (two monotonic and one oscillatory) local shock
regions. The relationships between the coefficients in neighbouring shocks are given by (i) (4.27); (ii) (4.28); (iii)
(4.20); (iv) (4.25); (v) (4.27).

(ii) Local monotonic shock (see (4.8)–(4.19)). If

U(z,Z) ∼ 1 − 2e−2z + B(ε)ez sin(Z + θ) as z→ +∞, ε → 0, (4.27)

where B(ε) is an exponentially small constant, then we have the matching condition

U(z,Z) ∼ −1 + 2e2z + D(ε)e−z sin(Z + ψ) as z → −∞, ε → 0 (4.28)

where D ≥ 0 with

D ∼(P 2+B2+2PB sin θ)
1
2 ,D sin ψ ∼P+B sin θ,D cos ψ∼B cos θ, P =πLε−2e− π

2ε .

(4.29)

Thus if D �= 0 (4.28) generates a local oscillatory shock about z = − log(−M(1)/D).
We are now in a position to describe how an alternating sequence of local monotonic and

oscillatory shocks is generated. This is illustrated in Figure 7 and we introduce a local variable
zj and a subscript j on the constants A,B,C,D, θ, φ andψ (essentially as introduced above)
when they occur in the j th local shock. We take z1 ≡ z.

Thus if the j th local shock is a monotonic shock, we have from (4.29)

Dj sin ψj ∼ P + Bj sin θj , Dj cos ψj ∼ Bj cos θj , (4.30)

where

P = πLε−2e− π
2ε . (4.31)

The (j + 1)th shock is an oscillatory shock located about zj+1 = 0, where (in view of (2.18))
we take

zj+1 ∼ zj + log(4/Dj ), (4.32)

and from (4.28) and (4.20) (with z replaced by zj+1 and φ − φ(1) by φj+1) we have that

Aj+1 = D2
j /8, (4.33)
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φj+1 = −1

ε
log(4/Dj )+ ψj + π (modulo 2π), (4.34)

and, from (4.26) and (4.2),

Cj+1 ∼ Aj+1 −Q sin φj+1, (4.35)

where

Q = 5π

2
 0ε

−4e− π
2ε . (4.36)

If Cj+1 > 0 (cf. (4.6)–(4.8)), this then generates a further local (monotonic) shock located
about zj+2 = 0, with

zj+2 ∼ zj+1 + 1

2
log(2/Cj+1), (4.37)

Bj+2 ∼ −2
√

2Cj+1, (4.38)

θj+2 ∼ − 1

2ε
log(2/Cj+1)+ φj+1 (modulo 2π); (4.39)

note in (4.32), (4.37) that j and j + 2 necessarily denote monotonic shocks and j + 1 an
oscillatory one. (4.30)–(4.39) provide a coupled system of difference equations relating, say,
Bj+2 and θj+2 to Bj and θj .

We note that this system breaks down if Cj+1 is negative, in which case the solution blows
up (as described earlier), or if either Cj+1 or Dj are zero, in which case the state u → 1 or
u→ −1, respectively, persists as z → −∞.

Some comments regarding the above system are needed relating to the explicit appearance
of the small parameter ε in the asymptotic expressions. Firstly, the appearance of terms in
log(Dj )/ε and log(Cj+1)/ε requires that Dj and Cj+1 be calculated at each stage correctly
at O(ε) and it is not immediately clear that all the necessary (O(ε)) correction terms have
been included in (4.30)–(4.39); in any case, the above formulation is expected at the very
least to capture the appropriate qualitative behaviour. Secondly, not all of the terms are of the
same order in ε and we next describe the main distinguished limit. However, which terms
enter at leading order depends on the shock being described and for the discussion of the
next subsection all the terms are relevant at some point; (4.30)–(4.39) can thus be viewed
as providing a convenient uniformly valid approximation. The distinguished limit we now
describe has Aj+1,B

2
j ,Cj+1 and D2

j all of O(Q) (cf. (4.35)) so the P terms in (4.30) are
negligible, yielding (since Dj > 0, Bj < 0)

Bj ∼ −Dj , ψj ∼ π + θj ,
and (4.33), (4.38) then give

Aj+1 ∼ Cj−1;
(4.34), (4.35) and (4.39) thus reduce to

Cj+1 ∼ Cj−1 −Q sin φj+1, (4.40)
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φj+1 ∼ φj−1 − 1

ε
log(2/Cj−1) (modulo 2π). (4.41)

The final term in (4.41) is of O(1), despite the 1/ε prefactor and the exponential smallness
of Cj−1, because it is to be taken modulo 2π ; the small parameter in (4.41) cannot thus be
readily exploited, clarifying the sensitive dependence of the solution on ε. However, under the
scaling

Cj ∼ Q
(c
ε

+ cj + d
)
,

where the positive constant c is independent of ε (with the Cj thus being almost equal) and
cj , d = O(1), the dependence on ε can be eliminated from the leading-order problem which,
defining the constant d by

d

c
= 1

ε
log

(
2ε

Qc

)
(modulo 2π),

takes the form

cj+1 ∼ cj−1 − sin φj+1, φj+1 ∼ φj−1 − cj−1/c,

equivalent to the standard map, which seems to be generic in this context and is itself well-
known to exhibit extremely delicate behaviour.

4.2.2. Solutions arising from given initial conditions
We now note the form of the solutions which may arise for given initial conditions (1.3) or
(1.4). Of particular interest will be the existence of regular shocks, solitary waves and periodic
solutions. The first two of these occur when either Cj+1 = 0 or Dj = 0.

We first observe that imposing (1.4) with M = −2 (we are free to choose this value by
translating z ifM < 0; ifM > 0 then the solution blows up (cf. (4.6)–(4.10))), then in (4.27)
B1 = 0, and hence from (4.30), D > 0, implying the non-existence of a true monotonic
shock, consistent with earlier results (e.g. [6]).

Similarly, our previous results concerning the existence of oscillatory shocks follow in that
if we impose (1.3) with, by translating z, M0 = M(1), then we have A1 = 0 in (4.20) and
equation (4.35) implies that C1 = 0 for φ = φ(1) and φ = φ(2).

We now investigate what may occur after two or more local shocks.
Homoclinic connections We shall consider homoclinic connections (solitary wave solutions)
with u → 1 as |z| → ∞; those with u → −1 as |z| → ∞ can be obtained from these via
u �→ −u, z �→ −z.

Imposing (1.4) (withM = −2), we have for the first local shock, from (4.27) that B1 = 0
and therefore from (4.30)

D1 ∼ P, (4.42)

ψ1 ∼ π

2
. (4.43)

This then generates a second local (oscillatory) shock, where from (4.32)–(4.35)

z2 ∼ z1 + π

2ε
− 2 log

(
1

ε

)
+ log

4π

L
, (4.44)
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A2 ∼ P 2

8
, (4.45)

φ2 ∼ −1

ε

(
π

2ε
− 2 log

(
1

ε

)
+ log

4π

L

)
+ 3π

2
(modulo 2π), (4.46)

C2 ∼ P 2

8
−Q sin φ2. (4.47)

Thus for a ‘2 local shock’ homoclinic connection (e.g., Figure 1(c)), we require C2 = 0, hence
from (4.46), (4.47)

cos

(
1

ε

(
π

2ε
− 2 log

(
1

ε

)
+ log

4π

L

))
∼ − πL

20 0
e− π

2ε . (4.48)

Thus we have an implicit equation for ε to determine when such homoclinic connections are
possible, and we therefore infer that such solutions exist only at discrete values of ε, with
ε ∼ (2m)− 1

2 for large integer m.
The distance between the centres of each local shock can be determined from (4.44) as

π

2ε
− 2 log

(
1

ε

)
+ log

4π

L
. (4.49)

We note from (4.47)–(4.48) that sin φ2 = O(exp(−π/2ε)) increases so the value of φ in
the local oscillatory shock is exponentially close to that required for a true oscillatory shock
(sin φ = 0). This is again in agreement with the observations of Yang [17] and emphasises
the exponential sensitivity of the problem for small ε.

For a ‘4 local shock’ homoclinic connection (see Figure 8), we require that C4 = 0, where
the constants for the first two local shocks are given by (4.42)–(4.47). We can impose C4 = 0
and work backwards to give, from (4.35)

A4 ∼ Q sin φ4, (4.50)

thus from (4.33) and (4.50)

D3 ∼ (8Q sin φ4)
1
2 , (4.51)

and from (4.34)

ψ3 ∼ π

4ε2
− 2

ε
log

1

ε
− 1

2ε
log

(
5π

4
 0 sin φ4

)
+ φ4 + π (modulo 2π). (4.52)

From (4.30), since D3 � P , we have that

B3 ∼ −(8Q sin φ4)
1
2 , (4.53)

θ3 ∼ ψ3 + π ∼ π

4ε2
− 2

ε
log

1

ε
− 1

2ε
log

(
5π

4
 0 sin φ4

)
+ φ4 (modulo 2π), (4.54)

therefore for the ‘4 shock’ homoclinic connection, we need (4.46), (4.47), (4.53) and (4.54)
to satisfy (4.38) and (4.39). These transcendental equations can be solved numerically, giving
discrete values of ε and θ4 and we thus again expect to see such solutions only for discrete
values of ε, subject to the additional constraints that C2,A4 > 0 in order that the solution does
not blow-up. We note from (4.37) and (4.47) and from (4.32) and (4.51) that the distances
between the second and third and between the third and fourth local shocks, respectively, are
both given by
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Figure 8. Schematic of ‘4 local shock’ homoclinic
connection.

Figure 9. Schematic of ‘3 local shock’ heteroclinic
connection (regular shock).

π

4ε
− 2 log

(
1

ε

)
+O(1). (4.55)

Note that this distance is approximately half of that between the first and second local shocks
(4.49). Confirmation of these distances is provided by numerical solutions (see Section 5).

The calculations above can be generalised in an obvious way to homoclinic connections
containing 2m local shocks, where m is an integer.
Heteroclinic connections The existence of single oscillatory shock solutions and non-existence
of single monotonic regular shock solutions having been established, we now consider odd
solutions containing three local shocks. First, we consider one of the type shown in Figure 9.
Such odd solutions necessitate that sin θ2 = 0, i.e., nothing is switched on across a Stokes
line in the second local shock. Having already obtained the value of θ2 in (4.46), we can
immediately write down the required asymptotic condition as

cos

(
1

ε

(
π

2ε
− 2 log

(
1

ε

)
+ log

4π

L

))
= 0. (4.56)

Thus again, we can obtain solutions to this equation, and therefore give an asymptotic con-
struction of the 3-shock solution, only for discrete values of ε.

For the 3-shock case of the type shown in Figure 10, odd solutions require that the second
shock be odd in z2. From (4.27) and (4.28), we thus have that B2 ∼ −D2 and θ2 ∼ −ψ2 + π
and therefore from (4.30)

sin θ2 ∼ − P

2B2
. (4.57)

Applying the oscillatory shock initial conditions (1.3), we have A1 = 0, φ1 arbitrary, and can
give expressions for B2 and θ2 using symmetry arguments from (4.51) and (4.52) respectively,
as

B2 ∼ −(−8Q sin φ1)
1
2 , (4.58)

θ2 ∼ − π

4ε2
+ 2

ε
log

1

ε
+ 1

2ε
log

(
−5π

4
 0 sin φ1

)
+ φ1 (modulo 2π). (4.59)
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Figure 10. Schematic of a ‘3 local shock’ hetero-
clinic connection (oscillatory shock).

Figure 11. Solutions obtained numerically for (1.4)
withM = −2 for ε = 0·045, ε = 0·047, ε = 0·048

Thus, for any value of ε, we can substitute (4.58) and (4.59) in (4.57) and solve for φ1; the left-
hand side of (4.59) is typically exponentially small. Therefore, provided that C1 > 0, we can
find odd 3-shock ‘oscillatory’ heteroclinic connections for any small value of ε, a conclusion
which is consistent with boundary condition counting arguments.

Again, the above calculations can be extended to 2m + 1 shock heteroclinic connections,
where m is an integer.

To summarise, odd heteroclinic connections with u → 1 as z → −∞ and u → −1 as
z→ +∞ exist for any small ε containing (presumably) anyO(1) odd number of local shocks.
Odd heteroclinic connections with u → −1 as z → −∞ and u→ 1 as z→ +∞ also exist at
discrete values of ε containing three and (presumably) more local shocks; the corresponding
solution containing only one local shock occurs only for ε = 0. Homoclinic connections with
u → 1 as |z| → ∞ and u → 1 as z → +∞ (or u → −1 as |z| → ∞) may exist containing
any even number of local shocks, but will do so only at discrete values of ε. Such comments
are consistent with, for example, the numerical observations of Hooper and Grimshaw [10];
see also the analysis of Yang [17].

5. Numerical results

The solution to (1.1) has been obtained numerically for the initial value problem (1.3). In
most cases, M = −4 (cf. (2.16)) was used, though to obtain a more accurate value of the
critical values φ(1) and φ(2) (see Figure 2) we included the correction term to M from (2.18).
As can be seen from Figure 2, this successfully produced shocks which are odd about a value
of z extremely close to zero. The NAG stiff-solver routine D02EBF was used throughout with
double precision arithmetic. The value of φ was varied, with initial conditions for u, u′ and u′′
being evaluated from (1.3), and imposed at a large values of z.

It was seen in Section 4.1 that there existed two critical values, Z = 0 and π , for which
a true oscillatory shock solution occurs. For sin Z > 0, further local shocks are generated
as z decreased, whereas for sin Z < 0, the solution blows up at some z = −π/(4ε) +
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2 log(1/ε) + O(1). Given the relationship between φ and Z (see (2.16) and (2.17)), we can
deduce the following behaviour for φ ∈ [0, 2π):

φ(2) < φ < φ(1) ⇒ further local shocks, (5.1)

φ < φ(2), φ > φ(1) ⇒ blow-up. (5.2)

These are consistent with our numerical solutions, observed for various values of φ ∈ [0, 2π),
which we illustrate for φ = 1(< φ(2)), which leads to immediate blow-up (see Figure 6), and
φ = 4(∈ (φ(2), φ(1)), which generates further local shocks (see Figure 5).

Numerical values for φ(1) and φ(2) were obtained by starting from a value of φ that led to
blow-up after one oscillatory shock and another that led to further shocks, then homing in on
the value at which the transition between these two regimes occurs. For ε = 0·045, we found
that φ(1) ≈ 6·145 and φ(2) ≈ 3·003. The results of the numerical integration with these values
of φ, which are in good agreement with the asymptotic values obtained from (2.17) (namely
φ(1) ≈ 6·141, φ(2) ≈ 2·99), are given in Figure 2.

We also solved (1.1) numerically for the initial conditions (1.4) with (without loss of gen-
erality) M = −2. As has been discussed in Section 4, we expect to see a local monotonic
shock followed by a local oscillatory shock, and either more local shocks or blow-up to then
occur, depending sensitively on the value of ε. Examples of this are given in Figure 11 for
three different values of ε.

The distances between successive local shocks are given asymptotically by (4.49), (4.55)
and agree well with the numerical solutions shown in Figure 5 and Figure 11. We note that
the distance between the first (from right to left) pair of local shocks in Figure 11 is given by
(4.49), whereas all other distances are given by (4.55), and for ε = 0·045 these are 31 and 11,
respectively.

Detailed comparison of the numerical and asymptotic solutions is fraught with difficulties.
Using Fortran double precision arithmetic implies that only quantities within fourteen signifi-
cant figures of the leading-order solution have any chance of being captured by the numerics.
For the oscillatory shock, for example, the terms switched on are of O(ε−4 exp(− π

2ε )). For
these to be captured numerically, we thus require, roughly speaking, that ε satisfy

ε−4e− π
2ε ≥ 10−13, (5.3)

which gives ε ≥ 0·036. For the monotonic shock solution, the term switched on is of O(ε−2

exp(− π
2ε )), requiring ε ≥ 0·043. Hence, any value of ε much lower than ε = 0·045, the

smallest value used here, would presumably lead to the crucial Stokes switchings not being
adequately captured by the numerical scheme. Such comments apply much more generally to
problems involving asymptotics beyond all orders; numerical schemes may give qualitatively
erroneous results due to rounding errors even for values of ε which are not particularly small.

6. Discussion

We have obtained asymptotic solutions to the Kuramoto-Sivashinsky equation for real z as
ε → 0, in both the oscillatory shock and monotonic shock cases, with particular reference
to the effects that the exponential growth of exponentially small terms resulting from the
Stokes phenomenon have far beyond the Stokes line; we have thus analysed such solutions
for larger ranges of the independent variable than previously. We have seen that the result is
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an alternating sequence of local oscillatory and monotonic shocks, with the solution usually
eventually blowing up, which is possible only after a local oscillatory shock; heteroclinic
and homoclinic connections containing different numbers of local shocks can also be con-
structed, however. Although it is relatively easy to calculate oscillatory shocks numerically, it
is very difficult to obtain connections with more than one local shock in this way (cf. Hooper
and Grimshaw [10]; we note, however, that the bisection process used in the former case
could again be applied). Good agreement between the asymptotic and numerical solutions has
been demonstrated, although it should be stressed that any numerical scheme must accurately
capture terms of sizes down to about exp(−π/2ε) to provide reliable results.

We have chosen in this paper to focus attention on a single ordinary differential equation
in order to give a detailed description of the arguments underpinning the the optimal trun-
cation approach to the analysis of beyond-all-orders effects. In particular, we have carefully
derived, and given numerical validation for, the predominance of the Fourier components
k = 0,±1,±2 in the large n behaviour (2.47). It should be stressed that the same techniques
apply directly to much more general classes of equation (cf. [12]) and we hope that the insight
provided by the detailed analysis of the example above will assist in pursuing more concise
treatments of beyond-all-orders effects in other multiple-scales problems, with the factorial
over power ansatz (cf. (2.47)) as usual playing a crucial role.

The current analysis provides a further example of the role of exponentially small terms
in selecting a discrete set of solutions from a family all of whose members appear to provide
valid solutions at each order, namely the selection of two oscillatory shocks (both of which are
odd) from a plausible one-parameter family. In Section 4 we have attempted to describe how
broader classes of solution can be analysed, with the exponential sensitivity of the problem
(with ultimately very different solutions resulting from initial data which are exponentially
close) being illustrated; while this sensitivity militates against giving an exhaustive account
of the multiple-shock solutions here, the difference equation formulation of Section 4.2.1
represents a substantial simplification of the original system.

The linearisation at infinity implies that the current problem contains precisely two scales,
z and Z, and we have attempted to exploit such information to the full. The beyond-all-orders
analysis furnishes some additional insight into the multiple-scales method; in particular, the
usual procedure of treating the two scales z and Z as being distinct independent variables
(despite their being related via Z = γ z/ε) is acceptable to all orders but their interrelation
proves crucial when performing the Stokes line analysis. Thus, in going from (3.6) to (3.7)
z/ε has been rewritten in terms of Z and this is the only stage in the analysis of Sections 2 and
3 in which the two variables are not treated as independent (other than the separate discussion
of the boundary value problem involving (1.7)); it is, moreover, a key step in accounting
correctly for exponentially small terms. A closely related point is that in going from (1.1)
to the multiple-scales form (2.1) we apparently gain a second translation invariant (in Z as
well as in z), which is responsible for the existence to all orders of the family (2.21) with
arbitrary Z. This also clarifies why the relation between z and Z must necessarily play a
role in accounting for exponentially-small terms. Finally, the relationship between the two
variables is also important in Section 4 in relating translations of z between neighbouring
shocks to those in Z. The Stokes smoothing in these multiple-scales problems is, as in earlier
studies not involving multiple-scales effects, via an error function.

We conclude by noting that, for reasons outlined above, purely numerical techniques are
impractical for problems of this ilk, even for values of ε which would not usually be regarded
as particularly small. Exponentially accurately asymptotics thus has an essential role to play,
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in combination with numerics and rigorous analysis, in the treatment of a very wide class of
such problems.

Appendix A, Other solutions to (2.7)–(2.9)

In seeking solutions to (1.1), other than those satisfying (1.3), we return to (2.7)–(2.9); see
also [3]. Without loss of generality, we can choose B0(z) ≡ 0. Integrating (2.7), (2.9) gives
the relationship

C2
0 = µ

A2
0

+ 1 − 1

4
A2

0 (A.1)

for A0 �= 0 (A0 = 0 gives the leading order monotonic shock solution u = tanh z̃). The centre
(given by µ = −1) has the solution

U0 = √
2 cos Z̃, (A.2)

and the heteroclinic orbit (µ = 0) for which A0 �= 0 represents the oscillatory shock solution.

Appendix B, Justification for neglecting Bn,k terms for which |k| > 2

The purpose of this appendix is to give further justification for OB(5). Substituting (2.31) into
(2.29), it can be seen that, of the nonlinear terms, only those for which j = 0 or j = n are
relevant at leading order.
Thus we have for k > 0

−k(k2 − 1)�(n+αk+2) k∼ −(3k2 − 1)(n+1)�(n+αk+1) k−n(n2−1)�(n+αk−1) k

+3kn(n+ 1)�(n+αk) k−2�(n+αk−1+1) k−1

+2�(n+αk+1 + 1) k+1.

(B.1)

Equating the possible leading order terms in n gives

−nk(k − 1)(k − 2) k ∼ −2nαk−1−αk k−1 + 2nαk+1−αk k+1, (B.2)

implying that

αk−1 − αk = 1 for k ≥ 3, (B.3)

so that

(k3 − 3k2 + 2k) k = 2 k−1. (B.4)

Thus, from (2.31) and (B.3), we have that

O(Bn,k) = O
(

1

n
Bn,k,1

)
(B.5)

for k ≥ 3. The equivalent result for k ≤ −3 follows immediately from OB(1).
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